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ABSTRACT

This investigation is a continuation of a thesis by T. S. Purewal 
(7)* Several of the simplifying assumptions made by the above author 
are either ignored or the justifiability of such assumptions is 
probed into in order to obtain a more rigorous solution. Effects 
of the assorted grain size^ non-Newtonian cooling, direction of coolant 
flow, thickness of the porous heat generating plate, specific heat of 
the coolant, and compressibility of the coolant are investigated in 
this thesis. Variation of maximum temperature of both coolant and 
the solid material for different types of heat source distribution 
are also studied.

As the grain size decreases heat transfer area per unit volume in
creases considerably. It is also observed that the temperature differ
ence between the solid and the coolant increases as the particle size 
increases. It is established that the assumption of Newtonian cooling 
does not introduce any error in the case of a porous plate formed by 
very small spheres. Expressions are also derived for maximuan coolant 
and solid temperatures under uniform, linear, exponential and sinus
oidal heat source distribution. The effect of thickness of the plate 
on heat distribution and on the temperature of the solid and the cool
ant have been mathematically expressed. The specific heat of coolant 
fluid does affect the temperature of the coolant. Specific heats of 
different fluids are not equal. Even for the same fluid specific 
heat generally varies with temperature. How these variations affect 
the coolant temperature was studied and equations for different cate
gories of heat source distribution developed. Graphs based on such
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equations are presented* In the case of compressible fluids higher 
pressures are found to be advantageous. Advantages include lower per
centage pressure drop^ lower figure of merit and higher mass rate of 
flow for same linear velocity.
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I. INTRODUCTION

Progress brought about by human ingenuity and technological develop
ments has always been accompanied by fresh problems the successful so
lution of which enables still further progress. These problems may be 
simple or complex. Many of them may elude solution for a period that 
is considerable. The history of technological development is nothing 
but the story of man*s triumphant struggle against such problems. The 
nuclear power development opened a new era. The recent developments in 
space explorations and exploitations are astounding. The coming years 
are likely to bring forth many more remarkable achievements. But for 
several engineering problems encountered side by side with these develop
ments the pace of progress would surely have been much more rapid. One 
of such problems is the removal of heat generated during a process or 
operation. Anxious are the moments when a manned space capsule re
enters the earth*s atomsphere after orbital flight. What causes most 
concern is probably the thought of whether it would be able to withstand 
the heat generated owing to friction. Different techniques have been 
developed and employed to meet such situations. Transpiration cooling 
is not yet one. It may not be very long before this young branch of 
heat transfer technology is thoroughly developed and fully employed. It 
may provide the key to many of the vexing heat transfer problems of to

day.
The principle of transpiration cooling is simple. A coolant fluid 

(liquid or gas) is allowed to pass through the pores of a porous body 
that is to be cooled. The coolant comes into contact all around the 
particles forming the heated body and removes heat. Very large heat
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transfer area per unit volume and intimate contact between the heated 
body and the coolant are the obvious advantages of transpiration cool
ing. It is an elementary heat transfer principle that the rate of heat 
removal is directly proportional to the heat transfer area^ the overall 
heat transfer coefficient and the temperature gradient. An increase in 
any one of these will result in a corresponding increase in heat trans
mission rate. So also^ for the same quantity of heat to be removed^ an 
increase in one factor will permit a corresponding decrease in any one 
or both of the remaining factors. For example^ if the heat transfer 
area is doubled and if the heat transfer coefficient remains unchanged^ 
the temperature gradient could be reduced to one half of the original 
to maintain the same rate of heat removal.

Transpiration cooling can be applied where internal heat generation 
is occurring or not. This field has already engaged the attention of a 
few workers. The extent of work done is not negligible; but it cannot 
be claimed to be complete. Investigations regarding the effectiveness 
of transpiration cooling in systems with internal heat generation how- 
ever i?« meagre. Investigation by T. S. Furewal (7) done in this field 
was preceded only by the work of L. Green, Jr. (3) as far as publi
cations reveal. These were preliminary investigations and very much 
limited by many simplifying assumptions. Some of the assumptions might 
be justifiable while others might be sufficient to undermine the accu
racy and reliability of the calculations. It is up to the further in
vestigators to tackle the problem in more rigorous manner taking into 
consideration actual conditions and to develop and perfect the tech
nology of transpiration cooling as an infalliable and reliable weapon.

It might be possible to solve an engineering problem in a variety
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of ways using a variety of techniques^ just as it might be possible to 
cure any particular disease by more than one medicine or by more than 
one type of treatment. To choose the method that is most efficient 
and least expensive is the duty of the engineer. Anything that makes 
the technique less expensive without diminishing the efficiency can be 
termed an improvement. In that sense^ in the field of high temperature 
heat transfer such as in the nuclear reactors, space craft, high temper
ature furnaces etc., the transpiration cooling system is bound to win 
recognition as an improvement. But before it can win that honor the 
process has to be thoroughly probed into and developed into a reliable 
piece of technology.
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II. TABLE OF UNITS AND SYMBOLS

Symbol
A

C
d
f
G

h
1
K

q

T

A0

Description
Cross sectional area of 
porous solid
Sp. heat of coolant
Diameter of the grains
Porosity
Mass rate of flow of the 
coolant
Heat transfer coefficient
Thickness of the plate
Thermal conductivity
Volumetric heat generation per 
unit volijune
Temperature of the coolant
Temperature of the solid
Temperature difference between 
solid and coolant
Radius of heat generating 
spherical particles
Temperature of the center of 
the sphere
Temperature at the surface of 
the sphere

Units
Ft.^

Btu/lb.°F.
Ft.

Lb/Ft.^hr.

Btu/hr.°F.Ft.^
Ft.
Btu/hr. °F.Ft.^/Ft, 
Btu/hr.Ft.^

°F
°F
°F

Ft.

°F
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III. REVIEW OF LITERATURE

Transpiration cooling as a heat transfer technique has been in the 
active consideration of scientists and engineers only for the past two 
decades or so. During this short span various aspects of the process 
in general have been investigated by several research workers. How
ever, cases where internal heat generation is involved have not been 
probed into by many.

W. D. Rannie (1) appears to be one of the earliest scientists who 
investigated porous wall cooling. The jet propulsion lab: publication 
of the California Institute of Technology published in 1947, contains 
details of Rannie*s theoretical studies of heat transfer in a sweat 
cooled duct. In the same year the U. S. Navy project squid technical 
report No. 4 (2) brought to light details of S. W. Yuan*s theoretical 
investigation of temperature field in laminar boundary layer on a porous 
flat plate with fluid injection. H. L. Wheeler (20) developed experi
mental techniques in investigating the influence of different variables 
in porous plate cooling.

The credit for pioneering work on transpiration cooling of porous 
heat generating source goes to Leon Green, Jr. (3). His paper under 
the caption 'Gas Cooling of a Porous Heat Source' was published in the 
Journal of Applied Mechanics. This was in 1952. He examined the solid 
to fluid heat transfer in which a gas passes through a porous wall of 
high specific surface with heat generation within the solid material.
He assumed that in the porous wall gas temperature and solid temperature 
are approximately equal. It was also assumed that the thermal conduc
tivity of the solid and the specific heat of the gas are constants. An
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equation developed by Green for the calculation of pressure drop across 
the wall is found to be very useful. Green did not limit his investi
gations to purely heat transfer aspects alone. From the consideration 
of the specific case of a Helium cooled graphite wall he concluded that 
efficient operation from the point of view of pumping power would re
quire the use of a system under a pressure of several atomspheres.
Green*s equation for calculating the energy required to pump the coolant 
will be found elsewhere in this thesis. His graphs correlating pressure 
drop to flow rate, pumping power/power output ratio to flow rate for 
different inlet pressures and minimum pumping power/power output ratio 
to average pressure, are appended to this thesis.

The Mechanical Engineering Department of the Missouri School of 
Mines and Metallurgy has done and continues to do much work in this 
field. In a short period of two years four theses have been produced.
In 1961 Herbert S. Brahinsky (4) investigated transpiration cooling of 
a porous plate with coolant flowing counter to heat flow. He reported 
that plate temperature depends upon heat flux, coolant flux, thermal 
conductivity of the solid material, specific heats of the solid and 
the fluid, density of the solid and the porosity. He also reported 
that in the steady state the maximum temperature at the surface is de
pendent only on the heat flux and the mass rate of flow of the coolant. 
Transient temperatures in a porous plate for one dimensional counter 
coolant flow were determined by R. G. Posgay (5). He considered a 
porous plate one surface of which was heated by a hot gas. A thesis 
submitted by Win. C. Wolkenhauer (6) is similar to the above. In the 
year 1962, T. S. Purewal (7) reported results of his investigations on 
the transpiration cooling of a heat generating porous plate. His study
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was limited to Newtonian cooling of a heat generating porous plate com
posed of uniform spherical particles cooled by an incompressible coolant 
whose specific heat remained unaffected during the process. His assump
tion that at any point in the plate, temperature of the solid and that 
of the coolant are not necessarily the same is a major deviation from 
previous investigators. His study covered uniform, linear, exponential 
and sinusoidal distributions of the internal heat generated. Expressions 
for coolant and solid temperatures at any point in the plate were de
veloped and presented by him. Expressions were established also for 
temperature difference between the heat generating plate and the coolant.

Chapter Nine of ̂ Conduction Heat Transfer* by P. J. Schneider (8) deals 
with transpiration cooling. This chapter includes a short discussion of 
transpiration cooling where internal heat generation is involved.

Many of the publications reviewed are not concerned with heat 
transfer in particular. They have, however, been very useful in under
standing many factors that affect porous plate transpiration cooling in
directly. The publication of Miles and Ponder (9) on porosity - perme
ability relationship throws much light on the effect of grain size and 
porosity on heat transfer surface area. Formulae enabling calculation 
of surface area per unit volume from knowledge of the particle shape and 
size, developed by them, have been used in this thesis.

Fancher and Lewis (10) are of the view that flow of fluids through 
porous media closely resembles that through pipes. They claim that there 
is a condition of flow in porous systems which resembles laminar flow 
and another which corresponds to turbulent.

Chalmers, Joseph, Taliaferro and Hawlins (11) produced a plot of 

modified Reynold's number against Fanning's friction factor for flow of
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fluids through porous media. They replaced d representing diameter in 
the Reynold's number by d^ and named it as equivalent diameter. The 
'equivalent diameter' was defined as mean effective pore diameter 
equivalent to the diameter of a capillary tube which would pass the 
same volume of fluid in the same time under equal pressure drop as would 
a single series of connected pores. Using the data for viscous flow 
only, this term was calculated from Poiseuille's law as follows:

A P  r 3 Z t ^ L U

d t  : 3  Z  L U

A ?

^  = absolute viscosity - Ib/sec. ft.
L = length of porous material core - ft. 
g = acceleration due to gravity - 32.2 ft/sec^

A P =  pressure drop - Ib/Ft^ 
de = equivalent diameter - Ft.

Bartell (12) and co-workers used this term repeatedly and discussed it 
critically and regarded it as having more than hypothetical value.
They hold that in the application of Poiseuille's law to flow through 
porous media it is essential to correct for (a) deviation of the cross 
section of the average pore from circular (b) increased length of path 
in such a system as compared to the apparent path (c) the larger 
pressure drop necessary for flow in a sinuous path (d) added energy 
consumption due to many alternate enlargements and contractions of 
the cross section in the average path of flow. C. S. Schlichter (13)
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has shown that in an assemblage of spheres of equal diameters the actual 
path of travel is from 1.2 to 1.5 times the apparent and that the 
average velocity is 1,8 times the apparent velocity. Chilton and Col
burn (14) from theoretical reasoning claimed that in viscous flow 
through porous media, expansion and contraction account for at least 
80% of the total resistance and friction due to viscosity of the fluid 
for 20% or less for a ratio of the minimum to maximum cross sectional
area of a pore of 0.33. A correction factor on this basis when applied

,2.to the equation, 3 2  hLU will increase the value of the equivalent
diameter.

A number of journals and books were perused by the author in con
nection with this investigation. They are acknowledged in the biblio

graphy.
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Fig. 1 Schematic Diagram
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IV. DISCUSSION

The thesis by T. S. Purewal (7) of which this investigation is a 
continuation contained the following assumptions:

1. The thermal properties of the solid and the fluid do not 
change as a function of temperature.

2. The fluid flow and heat flow are steady and undirectional.
3. Cooling of the particles in the porous solid is Newtonian.
4. Temperature of the coolant in the pores and temperature of 

the adjacent solid are not identical.
5. The coolant fluid is incompressible and not heat generating. 

In this investigation assumption No. 4 above is retained as such. All 
other assumptions are partly or wholly ignored or the justification is 
questioned. Wherever possible, expressions developed in the previous 
work are used. Symbols and units are maintained consistent, with a 
view to assure continuity. Figures assumed for the purpose of example 
problems and graphs are arbitrary. An effort has been made to make 
such figures as realistic as possible. The approach to this investi

gation is analytic.
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EFFECT OF HEAT GENERATION FUNCTION ON THE MAXIMUM TEMPERATURE OF THE 
SOLID GRAINS OF THE POROUS MEDIA AND ON THE COOLANT.

a. Uniform Heat Generation.

tx - Cl- f)x to
a  C U )

-X becomes maximtim when x =s

tmax = ^ 4. to (1)

Tx  r  t  +  ^  C i - f j j S - f  a d ̂ac

G C  €h

C7;
(2)

b. Linear Heat Generation.

tX r 3. 0 -f)
a c € [ ' - * 1

-I-

When t is maximum.

A t = o
d.x
jf S a. C t- xX I- fJ
dx G e t

9 O

1 = X when tx 9 tr^4aX‘

; U a *  - +  t.
2 61C

(3)
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Tx = % xci-f)ca.e-x; a. bo
^  O.C t  6lo£ J Ĉ )

When = T maax

<JT  ̂o .
dX

H -

I- P)C^-x)
Gr C

' When  ̂T,
6h = o

X = tiTAay^

X = 1 -  G.c<l_
c. Sinusoidal Heat Generation.

tx = t. + (t> I,
"IT (Si C

I I- CosT£X (
L « J

When^

tx = t;

(7)

(4)

max.

dc - o 
dx

C 1 ^̂  îfi Tf̂  -o
" g T ^  ^

; S m T O c  s o 
€

= £  .

twiax s ^ ^
T  G  C

(5)

Tx =• to + f') ̂ I  ̂ Cos JTx I d . 5m ITx
-IT G C  L  ^ J " T C7)
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When lx = Ti¥vta%

d T  _ Q.
A x

 ̂* ~ .fj SinTix .SfdjL CosTTjc
a c  T  " F r o

( F) SmTTx 
Ot C

Tr<i CoS II X
6 h t  ^

tctia H X _ _  TTd GrC
6heo-p)

: • U/ h c 10 IX = I unav.

X  - iaio "iTd a c
G h< C\—  1

■"
d. Exponential Heat Generation,

tx r b 4- ̂ >Cl-
K G c C

When tx z tV».ax̂
X = 1

\- C— Kx

C7)

(6)

Tk = b  +
K C . C  p  KG c j

~ KX

( 7)

(7)
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dr
d-X

= o •

dj
d X

r
Gh U- - f J

K & C

_ kx
e . k.

; • X*irhen,

i- f 
K a c

l x Z- IyY\C\.X̂

Gh

Hence^

ry\a x r U  -V Cl-_0
K a  C (8)
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EFFECT OF SPECIFIC HEAT OF THE COOLANT ON THE TEMPERATURE OF THE COOLANT.

Expressions for temperature of the coolant for different t3n?es of 
heat source distribution are shown below (7).

Type of heat distribution. 
Uniform heat generation

A gl - 9 C Adx

Linear

f

Exponential

<?x = ‘i- e
— Kx

Sinusoidal

Corresponding Coolant Temperature (7)

tx - t. -c c»- 
a  c

tx = L-. + % o - f >ace [ *-J

b. . t. + <?♦ c >- r I -

t. + %  I I- C t,6 Tix I
TT G  C [_ t  j

General

MCx) tx •= I  U M d x

Gc C
In all the above expressions c (sp. heat of the coolant) appears in the 
denominator. Therefore the temperature of the fluid is inversely pro
portional to its specific heat. If a fluid of high specific heat is used 
as the coolant more heat can be removed for the same temperature rise 
relative to a low specific heat coolant. Specific heat of different 
materials differ. Even for the same material specific heat generally 
changes with temperature. Specific heats of some of the fluids which may 
be useful as coolants in transpiration cooling are tabulated and shown
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in the appendix.
Variations of maximum temperature of the coolant with specific 

heat are plotted for the different types of internal heat generation 
and presented in Fig. 2̂  3_, 4 and 5.



www.manaraa.com

26

DATA FOR FIGURES Z , 3, 4 AND 5

q

1
K
C
G

2 X 10^ Btu/ft\r. 
0.25'
5
0.2 to 2
2.36 X 10^ Ib/hr.ft^
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An inspection of the equations for different types of heat distri
bution is made below to determine the effect of the thickness of the 
generating porous plate on the rate of heat distribution and on the 
maximum temperature of the coolant.
a. Uniform Heat Generation.

dCi = (i - Ailx

In this case the thickness of the plate has no effect on the rate 
of heat generation.

blfMAx r ^ C *- f) ̂
GtC

As the thickness of the plate increases maximum temperature of 
the coolant increases.
b. Linear Heat Generation.

Volumetric heat generation is given by the following expression:

% -

This equation can be transformed as.

EFFECT OF THE THICKNESS OF THE PLATE.

......................
Therefore the rate of volumetric heat generation increases as the 

thickness of the plate increases according to the above formula.

Also,

~GcC L J
rewriting.

t*. t. + ?.C.-0_X -
(SC 2.ac«

. (9)
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As the thickness of the plate increases coolant temperature increases 
according to the above equation:
c. Sinusoidal Heat Generation.

(X 5 m  jTx
" F

When X  = 0̂
S j h s o . 

K.
When X = 1̂ S m  ITx , o .

X.
When X = 1/2^ heat generated will be maximum.

t;, = t. + IT <S C
1

- Co Sjjj 
X

• h I- ^ COSTTX. • tA tp + ----—---  ---- -—  0TT ̂  C IT 6c C K,

When the value of C is such that Co&jrx unity.

t = t X o

(10)

This can happen only when ^  is nearly zero. In other words 1 must 

be very large in comparison with x.
Cos when Cos TTx _ coSlT.

When 1 is such that -p is nearly equal to unity,

tx - U  Z <5.  ̂ t
IT 65 C

When 1 is such that —  = 2, CO S T T >  »o.

Then,

tx . ti +  o -  ( H  
'TT Q  C
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In transpiration cooling compressible as well as incompressible 
fluids can be used as coolants. Certain applications for which trans
piration cooling is particularly adaptable are prone to find gases 
more convenient than liquids. Rocket cooling is an example. Nuclear 
reactors prefer Helium to other coolants. Gases under pressure aid 
heat transfer by virtue of increased mass rate of flow for the same 
volume rate of flow. A relatively smaller percentage of pressure 
drop is another advantage. These statements are substantiated in the 
following steps.

do. r ^  Cc CT dt.

EFFECT OF COMPRESSIBILITY OF THE COOLANT.

G  = C . V
The density of gases increase in direct proportion to pressure. By 
increasing the pressure to ten times^ the heat transfer rate can be 
stepped up by ten times for the same volumetric rate of flow.

Pressure drop in porous bodies can be calculated from the follow

ing formula: (10)

de 2- ^
Pressure drop is directly proportional to the density of the fluid and 
to the square of the linear velocity. By increasing the pressure^ the 
same mass rate of flow can be maintained at a lower linear velocity. 
This will be helpful in reducing the pressure drop.

High pressure and resulting reduced percentage pressure drop are 
bound to ensure better economy as far as the pumping of the coolant 
fluid is concerned. Leon Green^ Jr. (3) has shown that ’figure of
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merit* diminishes considerably with increasing pressure. Figure of 
merit as commonly applied to heat exchangers is defined as the ratio 
of the power required for pumping the fluid to the power removed as 
thermal energy.

Power required to pump a gas through the porous wall may be 
represented by the formula^

W = G
f  ^

For a perfect gas 

■RT

W  r  'RT G  .

Rate of heat removal is^

Q  = &  C a t

Figure of Merits
a

R T  (y) ^  
C A t ^

For small pressure drops relative to the average absolute pressure^

W  - ^  
A  CZiT 0.1/

Green has suggested the use of average temperature in place of 

T. Higher average pressure tends to reduce the W/Q ratio.
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Ponder and Miles (9) have developed mathematical relations 
expressing surface area per unit volume of porous bodies composed of 
grains of different geometrical shapes. A table containing such 
formulae will be seen in the appendix. For spherical particles the 
expression is.

EFFECT OF THE GRAIN SIZE.

T ” d
S represents average surface area, T the average volume and d the dia
meter of the spherical grain.

It is obvious from this expression that as the particle size de
creases, the surface area per unit volume increases. This is impor
tant in heat transfer, as one of the vital factors affecting rate of 
heat transfer is the surface over which the process is taking place.

T. S. Purewal has shown that as the particle size decreases, 
temperature difference between the solid and the coolant decreases. In 
this respect, decrease in particle size does not augur well as far as 
heat transfer rate is concerned. The conflicting influence of the 
variation of particle size from the above two angles poses a problem. 
For obtaining the most favorable condition, an optimum particle size 
will have to be chosen.

As the grain size decreases the pore diameter becomes smaller too. 
This will cause increased pressure drop due to friction as the cool
ant flows through the pores.

\  ■ ̂  <i.»a
de represents the pore diameter

represents head lost due to friction
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If the porous plate is composed of assorted sizes^ it might give 
rise to some complications. Primarily the effect of such assortment is 
to reduce average grain size. How assortments of different grain 
sizes affect surface area per unit volume can be seen from table I.

A maleffect of the assortment is that it might give rise to non- 
uniform pore diameter.
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TABLE I

EFFECT OF ASSORTED GRAIN SI2E ON SURFACE AREA PER UNIT VOLUME

38

Particle Diameter 
(Ft.)

Percentage 
Per Unit Volume

Surface Area 
Per Unit Volume 

1/Ft.
10 X 10"^ 100 6 X 10^
20 X 10"^ 100 3 X 10^
10 X 10"^ 50 3 X 10^
20 X 10“̂ 50 1.5 X 10^

10 X 10“̂ 25 1.5 X 10^
13.33 X 10"^ 25 1.22 X 10^
16.67 X 10"^ 25 0.9 X 103

20 X 10-^ 25 0.75 X 10^
10 X 10-^ 20 1.2 X 10^

12.5 X 10“̂ 20 0.96 X 10^
15 X 10"^ 20 0.80 X 10^

17.5 X 10-^ 20 0.686 X 10^
20 X 10‘̂ 20 0.60 X 10^

10 X 10“̂ 10 0.6 X 10^
11.11 X 10"^ 10 0.54 X 10^
12.22 X 10"^ 10 0.49 X io3
13.33 X 10"^ 10 0.45 X 10^
14.44 X 10-^ 10 0.416 X 1q 3
15.55 X 10"^ 10 0.386 X 10-̂
16.66 X 10“̂ 10 0.360 X 10^
17.77 X 10"4 10 0.338 X 10^
18.88 X 10-^ 10 0.318 X 103

20 X 10“̂ 10 0.30 X 10^

4.5 X  103

4.37 X 10'

4.25 X  10^

4.198 X  10^
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The Newtonian cooling of solids presupposes that the resistance 
to heat transfer through conduction inside the body is negligible.
When the heat flows from the interior of such a body to a surrounding 
fluids the entire resistance to heat flow is offered by the fluid film. 
For the purpose of finding out how far the assiimption of Newtonian 
cooling in the case under study is tenable, let us consider a heat 
generating sphere of radius 'a'. Let k represent the thermal conduc
tivity of the material, q, the rate of internal heat generation, T^, 
the surface temperature and T, the inside temperature of the sphere 
at any point.

EFFECT OF NON-NEWTONIAN COOLING.

Let us consider a very small 
shell of thickness d , inside 
the sphere.

In the steady state, the stim of 
the heat received by the shell from 
the interior plus that generated 
within the shell itself must be 
equal to the heat flowing out of the 
shell.

— .4TTK -h 4  - —Adr -  P 'S  •* 4 / '

y^d,
H- ■ ' ( r ' S )  -

— o

Integrating.

13 K = C.
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<^T =

\ ~

c, in
-

r

_ ^  V'
3  K

-  ± 1 ^ ^  c ,
€ K

Boundary Conditions:
T is finite when r = 0
;. =: 0

= T when. r = as
* T„ = Cx-s 6K

C2 = Ts 4- 9 a" .
£ K

• T  = ' u - t  3 J 1 ' .
G K  G K

= T1 C Q*"—--T
GK

Temperature at the center = "Hs -f- ,
G K

. o»;

. C'»d

Example problems:
k = 25 Btu/hr.°F,Ft^/Ft.

T = 1000°Fs
(a) q = 100,000 Btu/hr.Ft^ 

a =5 .01 Ft.

Temperature at the center = 1000 + 100,000 x .01^ =s 1000.06°F
6 X 25

(b) q = 1,000,000 Btu/hr.Ft^ 
a = .01 Ft.

Temperature at the center = 1000 + 1,000,000 x .01^ = 1000.6°F
6 X 25
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(c) , q =5 100,000 Btu/hr.Ft
a = .01 Ft.

Temperature at the center = 1000 + 100,000 x .01^ = 1006.6°F
6 X 25

(d) q = 1,000 Btu/hr.Ft^ 
a = .01 Ft.

Temperature at the center = 1000 + 1,000,000 x .01^ - 1066.6®F
6 X  25

(e) q =5 1.5 X  10^ Btu/hr.Ft^ 
a — .01 Ft.

o 2Temperature at the center = 1000 + 1.5 x 10 x 101 = 1100°F
6 X 25

(f) q = 1.5 X 10® Btu/hr.Ft®
a - .01 Ft.

Temperature at the center = 1000 + 1.5 x 10^ x .01^ = 11000°F
6 X  25

The above calculations clearly show that in the case of very 
small spheres, the error introduced by assuming Newtonian cooling is 
not considerable. This is especially true when the rate of heat 
generation is not excessively large. In the extreme cases where 
the grain size is not too small and the rate of internal heat 
generation is considerably high, the assumption of Newtonian cooling 
should be made only with caution.



www.manaraa.com

EFFECT OF THE DIRECTION OF COOLANT FLOW ON THE MAXIMUM TEMPERATURE 
OF THE COOLANT.
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In general, in heat transfer processes the coolant may be passed 
parallel to the direction of heat flow or in the opposite direction. 
Cross flow systems also are in practice. In the case of trans
piration cooling of a porous plate, the direction of coolant flow 
has no effect on the maximvim temperature of the coolant.
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This investigation of the transpiration cooling of a heat 
generating porous plate has been based on more realistic assump
tions as compared to previous studies. The analysis has been more 
rigorous. By virtue of these, the results are more reliable.

The analysis of the effect of the specific heat of the coolant 
has conclusively proved the desirability of choosing coolants of 
high specific heat. An interesting observation that this investi
gation has brought out is the conflicting effects of the grain size 
on the heat transfer surface area and on the tenqperature gradient.
It may be recalled here that as the grain size increases the temper
ature gradient increases; but, only at the expense of the heat trans
fer surface area. This necessitates striking of an optimum grain 
size so as to make the best out of this paradoxical situation. This 
intriguing phenomenon might be worth further considerations.

The observations regarding the direct and indirect influence of 
the compressibility of the coolants-viz. the advantages of high 
pressure systems from the point of view of pressure drop, pumping 
power and heat transfer rate must be of significance. Here again, 
investigations regarding optimum conditions might prove worthwhile.

The investigation has succeeded in proving that in the case of 
small spheres, the assumption of Newtonian cooling does not jeopard
ize the accuracy of the results.

Further investigation into cases where the porous plate is com
posed of grains other than spherical in shape is suggested. Study of 
heat transfer through porous bodies other than plates seems to be
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another useful project. Experimental verification of the analytical 
results obtained so far appears to be inviting.
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VII. APPENDIX 
TABLE A. 1

HEAT OF COOLANT FLUIDS (24,25)

Fluid Temperature Specific H(
°F. Btu/lb.°F

Helium (1 atm) all temp. 1.240

Dry air (1 atm) 45 .24

243 .242

441 .246

639 .252

1250 .270

2060 .287

Carbondioxide 212 .22

570 .23

750 .28

Nitrogen 32 .25

2550 .31
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THERMAL CONDUCTIVITIES OF SOME SOLID MASEERIALS
USED IN NUCLEAR REACTORS (24)

Material Thermal Conductivity
K Temp.
Btu/hr.°F.Ft2/Ft. "F

Aliminum (25) 128 77
Beryllium (extruded) 80 200

73 400
68 600
61 800

Be ry 11 iumoxide 29 400
22 600
18 800

Graphite 76 600
65 800
59 1000

Stainless Steel (type 347) 9 212
12.6 932

Thorium 22 212
26 1202

Uranium (cas t) 15 200
17.5 400

18 600

Zirconium (crystal bar) 11.8 212
11.4 392
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APPENDIX 
TABLE A. 3

SURFACE AREA PER UNIT VOLUME FOR DIFFERENT GEOMETRICAL SHAPES (9)

Shape
Sphere

Cube

Area Per Unit Voltime

d
6
d

Remarks 
d = diameter

d = length of 
edge

Oblate spheroid 7.64 Thickness = diam.

Prolate spheroid 5.18 length = 2 X diam.

4.94 length = 3 X diam.

4.84 length = 4 X diam.
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APPENDIX

Fig. A. 1 Minimum W/Q Ratio Vs Average Pressure 
(After Leon Green, Jr. 3.)
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APPENDIX

O'

10-1

10-2

Grade 30 Porous Graphite 
1 « . 5 in. 
q »s 10 Btu/ln^sec.to = SOÔ R

10-3
10-4 10'^

G (lb/in2 sec.)
10-2

Fig. A. 2 Pumping-Power/Power-Output Ratio Vs Flow 
Rate For Different Inlet Pressure 

(After Leon Green, Jr. 3.)
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Ifig. A. 3 Pressure Drop Across Wall Vs Flow Rate (After Leon Green, Jr. 3.)
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